The case for solar electricity

In recent years, electricity production from photovoltaic (PV) panels has become highly cost-effective and its cost will only decrease in the future, irrespective of what producers of competing fossil fuel technologies claim. Luckily, input for solar will remain free of charge for another few billion years or so, guaranteed. During 2016, the cost of unsubsidized1 utility-scale PV electricity fell to between 3.2 and 4 cents (CAD) per kilo-Watt-hour (kWh) in places like southern California, northern Chile and Abu Dhabi. Singling out Abu Dhabi, we admit that the Persian Gulf region (3462 h/y) receives 50% more annual sunshine than, say, Dawson Creek, BC (2213 h/y) and we can’t really expect similar pricing for BC. However, PV modules perform better at lower temperatures and hence if corrected for temperature, a PV array in Abu Dhabi only produces 30% more solar electricity than one in Dawson Creek. Plus, cleaning of the PV arrays after sandstorms built into the cost for Abu Dhabi, does not really apply to Dawson Creek, further compensating for the lower sunshine hours in BC. Besides, Dawson Creek is not even the sunniest place in BC! In other words, BC is a pretty good place to go solar and at a very competitive price.

Although most of the photovoltaic (PV) panels are a pleasing blue, they are in fact one of the greenest methods to produce electricity: PV’s footprint of 10 – 40 g of carbon dioxide (CO2) release per kWh produced is only beaten by wind (5-25 g CO2/kWh), putting hydroelectricity2 (273 g CO2e/kWh), and fossil fuels (natural gas: 500-620 g CO2/kWh; oil: 745 g CO2/kWh; coal 1050 g CO2/kWh) back into the dark corners where they belong. And this is even before the societal (externalized) costs of the competing energies (air pollution, respiratory diseases, pipeline leaks, tanker spill clean-ups, fugitive emissions, ocean acidification, blowouts, etc.) are considered. Installed PV needs minimal maintenance, does not make any sound, is free of emissions, and its life expectancy easily exceeds 35 years.

In addition, local electricity production by PV means local control, imparts a sense of local ownership, at least partial energy autonomy and represents a collective vision that is there for all to see. O.k. so the sun does not always shine and the wind does not always blow, but the criticism of intermittency often leveled against renewable energies is rendered baseless by the extremely rapid advances in multiple storage methods, including batteries and pumped storage. BC’s existing “legacy dams” allow us to keep the reservoirs full in the sunny months, ready to dispatch when other renewables are not available. We can also use extra hydro to help bring out of province fossil fuel generators offline. Pumped storage is an obvious choice for BC and is likely to mitigate other effects of climate change such as unpredictable rainfall patterns, timing of freshet, and variability of snowpack. Finally, as demonstrated all over the world, technical problems to integrate large amounts of renewables into the grid have been solved and continue to exist only in the minds of internet trolls, old-style utilities and grid operators.

Why go solar?

  • Truly clean energy
  • Silent, reliable, very low maintenance
  • Long-term (>35 years)
  • Free power source & limitless (3 billion years or so)
  • Free delivery
  • Energy independence, energy security
  • Distributed generation (no- to low-transmission losses)
  • Easily scalable
  • Minimizes tier-2 pricing
  • Highly cost competitive
  • Payback!